

صفحه ۲	456C	نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور
ِ شما در جلسه آزمون است.	. درجات کادر زیر، بهمنزله عدم حضور	* داوطلب گرامی، عدم درج مشخصات و امضا در من
	سه، بالای پاسخنامه و دفترچه سؤالا،	اینجانب با شماره داوطلبی شماره داوطلبی مندرج در بالای کارت ورود به جل روی جلد دفترچه سؤالات و پایین پاسخنامهام را ت
	امضا:	

زبان عمومی و تخصصی (انگلیسی):

PART A: Vocabulary

<u>Directions</u>: Choose the word or phrase (1), (2), (3), or (4) that best completes each sentence. Then mark the answer on your answer sheet.

- I have to say, I'm not particularly in my own understanding of the true nature of fear, even though I make my living drawing horror manga.

 mutual
 confident
 possible
 available
- 2- We must stop seeing nuclear as a dangerous problem and instead recognize it as a safe byproduct of carbon-free power.
 1) missile 2) arsenal 3) conflict 4) waste
- 3- My father has always been with his money. I didn't have to pay for college or even for the confused year I spent at Princeton taking graduate courses in sociology.
 1) generous 2) associated 3) content 4) confronted
- 4- Even though a cease-fire, in place since Friday, has brought temporary
 from the bombardment, the threat the strikes will return leaves people displaced yet again.
 1) relief
 2) suspense
 3) rupture
 4) resolution
- 5- What you'll hear, often, is that you should your dream; follow your passion; quit your job and live the life you want.
 1) undermine 2) partake 3) pursue 4) jeopardize
- 6- Nationwide, poor children and adolescents are participating far less in sports and fitness activities than their more peers.

1) astute2) otiose3) impecunious4) affluent

PART B: Cloze Test

<u>Directions</u>: Read the following passage and decide which choice (1), (2), (3), or (4) best fits each space. Then mark the correct choice on your answer sheet.

 8-

9-

٣	صفحه '	456C	انو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور
	that point, the international organi	zation administering effective of	onal Sports Federation (IF) status. At ng the sport must enforce the World ut-of-competition tests on the sport's)) forth by the Olympic Charter.
8-	1) to be a recognition as	/	gnition as
	3) recognizing of	4) recog	gnizing
9-	1) For a sport be recognized	2) Once	a sport is recognized
	3) A sport be recognized	4) A rec	cognized sports
10-	1) set	2) sets	
	3) that set	4) which	h to be set
	PART C: Reading Comprehe	nsion	

<u>Directions</u>: Read the following three passages and answer the questions by choosing the best choice (1), (2), (3), or (4). Then mark the correct choice on your answer sheet.

PASSAGE 1:

Nanotechnology is the manipulation and engineering of matter at the nanoscale, typically defined as the range of 1 to 100 nanometers (nm), where one nanometer is one-billionth of a meter. At this scale, materials exhibit unique physical and chemical properties that differ significantly from their macro-sized counterparts. This allows for innovative applications across various fields, including medicine, electronics, energy, and environment protection. In medicine, nanotechnology enables targeted drug delivery systems, improving the efficacy and reducing side effects of treatments. In electronics, nanoscale components lead to faster, smaller, and more efficient devices, driving advancements in computing and telecommunications. Nanomaterials, such as carbon nanotubes and nanoparticles, enhance the performance of materials, making them lighter, stronger, and more durable.

Environmental applications of nanotechnology include improved water purification systems and the development of more efficient solar cells. However, the rapid advancement of this technology raises concerns regarding safety, ethical implications, and environmental impact. As researchers continue to explore and innovate in nanotechnology, balancing these benefits with potential risks remains a critical challenge for society. Overall, nanotechnology holds the promise of revolutionizing multiple industries by providing novel solutions to complex problems.

- 11-The underlined word "exhibit" in paragraph 1 is closest in meaning to 2) display 3) distribute 1) denv 4) strengthen
- 12-The underlined word "their" in paragraph 1 refers to 1) materials 2) properties 3) counterparts 4) applications
- According to paragraph 1, all of the following points are true EXCEPT that 13-1) nanotechnology is applied in various disciplines from electronics to medicine
 - 2) Nanomaterials contribute to the production of lighter and more durable materials
 - 3) nanoscale deals with material dimensions smaller than 1 nanometer
 - 4) there are one billion nanometers in a meter

- All of the following words are mentioned in the passage EXCEPT 14-1) atom 2) cells 3) impact 4) nanotubes
- According to the passage, which of the following statements is true? 15-
 - 1) Nanotechnology is still a theoretical field not yet able to find any significant applications in the real world.
 - 2) Researchers believe that the risks of nanotechnology are almost insignificant and should not much concern us.
 - 3) The application of nanotechnology in medicine is a matter of concern as it has intensified and unpredictable side effects.
 - 4) Advances in the field of nanotechnology have resulted in concerns regarding its safety and ethical implications.

PASSAGE 2:

As foods are highly susceptible to spoilage, food packaging is the critical point in proper handling and maintenance of food quality. Nanotechnology plays a crucial role in food preservation, offering innovative solutions for food monitoring and enabling the creation of packaging with unique functional properties. By using materials at the nanoscale, it is possible to produce packaging with greater gas and moisture barrier qualities and improved antimicrobial properties. The nanomaterials used in the packaging can enhance food safety in various ways. They enable the self-healing of packaging damage, keep consumers informed about contamination or food spoilage, and even gradually release preservatives to prolong the durability of food items.

In this context, nanotechnology enables the development of intelligent and active packaging. Intelligent packaging is packaging that can monitor food quality and communicate this information to the consumer. This can help ensure that food is safe to consume. For instance, it can be used to detect harmful bacteria in food. In the presence of these organisms, the packaging sends a warning signal to the consumer, by a change in the packaging color. This can help prevent the consumption of contaminated food.

On the other hand, active nanotechnology packaging contains nanostructures that can improve food quality and extend shelf life. These nanostructures can inhibit the growth of bacteria and fungi, eliminate unpleasant odors and tastes, and protect food against oxidation. In addition to the direct benefits for food products, nanotechnology can also be beneficial for the environment in different ways.

- 16-The underlined phrase "susceptible to" in paragraph 1 is closest in meaning to
 - 1) effective for
- 2) vulnerable to

- 3) immune from
- 4) inclusive of According to paragraph 2, nanomaterials in intelligent packaging can 17-
 - 1) enhance food quality by eliminating harmful bacteria and fungi
 - 2) be harmful if not properly used according to established standards
 - 3) be used to communicate information about the quality of food to the consumer
 - 4) warn the consumer about the quality of food by a change in the shape of the package

۵	صفحه	4560	اور	نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شن
18-	 Nanostructure and effectively Nanostructure growth of bact The application as it contribute Nanostructure 	v neutralize unpleasant s can improve food peria and protecting for n of nanotechnology es to waste production	notechnology pack t odors and flavors quality and extend od by oxidation. in packaging is do	kaging can enhance shelf life
19-		wing best describes the	ne writer's overall t	one in the passage?
		2) Objective		
20-	I. In what ways d II. How do intel food spoilage?	oes nanopackaging co ligent nanopackages of preservatives are	ntribute to the pres warn the consumer	ch of the following questions? ervation of natural resources? • about harmful bacteria and anopackaging to prolong the
	•	2) II and III	3) Only I	4) Only II

Nanotechnology has various applications in sports equipment. Nano-materials can be used in functional fabrics. For instance, Adidas clothing fabrics used nano-materials as the core technique; the shell fabrics can be tiny as 1/50 of the diameter of the hair, which provides a positive role for the portability and comfort of clothing. The nanometer fiber fabric made by Japan Teijin Fiber Co. has been used in making sportswear because it is light and strong waterproof, also with strong permeability. The fiber in sharkskin swimsuit can reduce 3% of the flow resistance when swimming. This is extraordinarily significant in competition especially when the outcome is decided in 0.1 second as in swimming. [1]

Materials such as nano-silver are non-toxic, smelless, non-metamorphic, without decomposition and have no stimulation to human skin. Nano-fiber plays a vital role in the friction brake as well. [2] In addition, people are constantly upgrading nano-fiber's elasticity and reducing its weight, so that we can improve the elastic potential energy and variable rate of shoes greatly.

[3] Moreover, to continuously improve sport performance, over-recovery training has become a necessary part of athletes' training. The key to athletic training for the athletes is how to get better recovery. It's also very important for ordinary exercisers to recover from muscular soreness after exercise without affecting their normal life. Now, in addition to physical therapy, nanotechnology therapy has appeared which is more convenient and efficient.

As we all know, there are biomagnetic fields in human body. Every cell in human body is a biomagnetic micro unit. So the changes in the external magnetic field can affect the body's physiological function. Sport specialists reported that the magnetic field has impacts in human beings' nervous system, heart function, blood components, vascular system, blood lipid, blood rheology, immune function and endocrine function.

456C

Therefore, biomagnetic fields have function of disease treatment and health care to human body. [4]

21- Which of the following techniques is used in paragraph 3?

- 1) Appeal to authority 2) Exemplification
- 3) Comparison 4) Statistics
- 22- According to the passage, nanotechnology is in a way associated with all of the following EXCEPT
 - 1) more efficiency
 - 3) less weight

- 2) more portability
- 4) less price

23- What does the passage mainly discuss?

- 1) Nanotechology and its applications in sports
- 2) Cutting-edge nano-materials in sportswear
- 3) High-tech developments in athlete rehabilitation
- 4) The influence of professional sports on technological advances

24- According to the passage, which of the following statements is true?

- 1) The fibers in sharkskin swimsuits, enhanced by nanotechnology, can decrease flow resistance by 25% while swimming.
- 2) Despite the various theoretical advances in nanotechnology, some time should pass before it can find a tangible function in the life of people.
- 3) Experts hold that magnetic fields can influence various aspects of the human body, including the vascular system and immune function.
- 4) Because of the unique nature of the human body, the changes in the external magnetic field barely influence the body's physiological function.
- 25- In which position marked by [1], [2], [3] or [4], can the following sentence best be inserted in the passage?

Based on this principle, the nano-nickel powder is added to products to adjust the function of human body and improve resistance to disease and realize its health care function.

- 1) [1] 2) [2]
- 3) [3] 4) [4]

ریاضیات مهندسی:

۲۶ - مکان هندسی اعداد مختلط z که در تساوی | z + ۱ | = | z - i | صدق میکنند، کدام است؟

$$\sqrt{Y}$$
 و شعاع ۲) دایره به مرکز $\frac{1}{Y}$ و شعاع ۲) دایره به مرکز $\frac{1}{Y}$ و شعاع ۲) $y = -x$ (۴) $y = x$ (۳)

u(x , y) = x^r - axy^r اگر دام است؟ - ۲۷

$$rx^{r}y - y^{r} + c$$
 ()
 $rx^{r}y^{r} - y^{r} + c$ ()
 $rx^{r} - y^{r} + c$ ()
 $x^{r}y - ry^{r} + c$ ()
 $x^{r}y - ry^{r} + c$ ()

456C

$$\begin{array}{c} & \Lambda & \mbox{int} \\ & \Lambda \\ & \mbox{int} \\ & \mbox$$

$$\ln|u| = \frac{ky^{r}}{x} + c \quad (1)$$
$$\ln|u| = ky^{r} + \frac{1}{kx} + c \quad (7)$$
$$u = ce^{k(y^{r} - x)} \quad (7)$$
$$u = ce^{k(x + y^{r})} \quad (6)$$

۳۶ - با حذف تابع دلخواه h بین متغیر وابسته z و متغیرهای مستقل x و y، در ضابطهٔ (h(x^۲ - z^۲, xy) = ۰، کـدام معادله دیفرانسیل با مشتقات جزیی حاصل می شود؟

$$xz_{x} + yz_{y} = x^{\gamma} (\gamma \qquad xz_{x} - yz_{y$$

صفحه ۹	456C	نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور

۳۷ - اگر جواب مسئله موج دوبعدی

$$\begin{cases} u_{tt} = f(u_{xx} + u_{yy}), & \circ < x, y < \pi \ , \ t > \circ \\ u(x, y, \circ) = sin(x)sin(y), & \circ \le x, y \le \pi \\ u_t(x, y, \circ) = \circ, & \circ \le x, y \le \pi \\ u(\circ, y, t) = u(\pi, y, t) = \circ \\ u(x, \circ, t) = u(x, \pi, t) = \circ \end{cases}$$

به صورت $G_{m,n}(t)$ جام است $u(x,y,t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} G_{m,n}(t) \sin(nx) \sin(my)$ کدام است $G_{1,1}(t) = \cos(\sqrt{r}t), \quad G_{m,n}(t) = \cos(\sqrt{n^r + m^r}t), \quad m,n > 1$ (1) $G_{1,1}(t) = \circ, \quad G_{m,n}(t) = \cos(r\sqrt{n^r + m^r}t), \quad m,n > 1$ (1) $G_{1,1}(t) = \cos(r\sqrt{r}t), \quad G_{m,n}(t) = \circ, \quad m,n > 1$ (1)

$$G_{1,1}(t) = \cos(\sqrt{r}t), \quad G_{m,n}(t) = 0, \quad m,n > 1$$
 (f

(x,s)) تبدیل لاپلاس مسئله (u(x,t) ست? ($u_x + u_t + u = t \sin(x), u(x, \circ) = \sin(x)$ تبدیل لاپلاس (u(x,t) ست.)

$$\frac{\partial U}{\partial x} + (s+1)U = \frac{(s+1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s+1)U = \frac{(s^{Y}+1)}{s^{Y}}\sin(x) (1)$$

$$\frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{\partial x} + (s-1)U = \frac{(s-1)^{Y}}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{(s^{Y}+1)^{Y}} (Y \qquad \qquad \frac{\partial U}{(s^{Y}+1)^{$$

ب کدام است؟ $\begin{cases} y''(x) - y'(x) + \lambda y(x) = \circ \\ y(\circ) = y(\pi) = \circ \end{cases}$, $\circ \le x \le \pi$ کدام است? -*• $\phi_n(x) = \sinh(x)\sin(nx), \quad n = 1, 7, ...$ ()

$$\phi_{n}(x) = \sinh(x)\sin(nx), \quad n = 1, 7, ... (1)$$

$$\phi_{n}(x) = \sinh(x)\cos(nx), \quad n = 1, 7, ... (7)$$

$$\phi_{n}(x) = e^{x}\sin(nx), \quad n = 1, 7, ... (7)$$

$$\phi_{n}(x) = e^{x}\cos(nx), \quad n = 1, 7, ... (7)$$

٩

صفحه ۱۰	456C	نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور
		شیمی کاربردی:
از سیالی با جـرم مخصـوص	دیگـر قـرار دارد. بـین دو صـفحه،	۴۱ – یک صفحهٔ شیشهای بهفاصله ۱mm از صفحه
ک با سرعت ثابت <mark>m</mark> ، معادل s	احد سطح برای حرکت صفحه متحر	۱۰۰۰ پر شده است. اگر نیروی لازم در و m ^۳
		۴Pa باشد، ضریب لزجت سینماتیکی سیال (
$\mathbf{v} = \circ_{/} \mathbf{v} \frac{\mathbf{m}}{\mathbf{s}}$		۰/۴ (۱
	\rightarrow F = FP a	۲ ^-۵ (۲
J ↓ ,mm		۲×۱۰ ^{-۵} (۳

۴۲- نیروهای افقی و عمودی وارد بر دریچه نیماستوانه AB، برحسب γ سیال در واحد عرض بهترتیب کدام است؟ ۲) ۴γ و ۱/۶γ و ۱/۶γ

 $\mathbf{r} = \mathbf{1} \mathbf{m}$

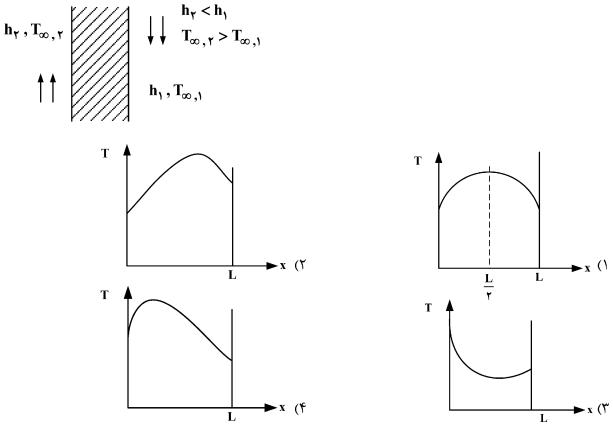
۴۳ - بر روی لولهای بهقطر m o cm، لولههای پیزومتر و پیتوت مطابق شکل نصب شده است. درصورتی کـه مقـدار h

مساوی ۲۰cm ۲۰ باشد، مقدار سرعت آن در نقطه A، چند $\frac{m}{s}$ است؟ ($g = 1 \circ \frac{m}{s^{\intercal}}$)

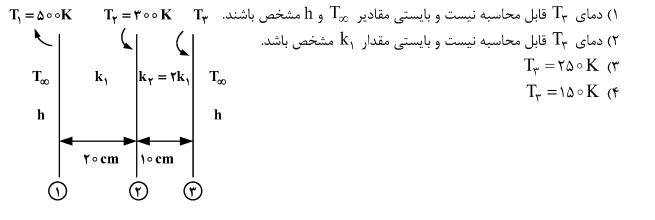
$$\mathbf{D} = \mathbf{v} \circ \mathbf{cm} \qquad \mathbf{v} \in \mathbf{v}$$

۱ (۴

 $f \times 10^{-0}$ (f


به با سرعت $\frac{m}{s}$ و لزجت سینماتیکی $\frac{m}{s}^{V} = 10^{-9} \frac{m^{V}}{s}$ در لولـهای بـهقطـر ۶۳۳ جریـان دارد. روغـن بـا چگـالی -۴۴ مرعت $\frac{m}{s}$ و لزجت سینماتیکی $\rho = 8 \circ 0 \frac{kg}{m^{V}}$ در لولهای بهقطر ۲۵ mm با چه سرعتی بر حسب $\frac{m}{s}$ حرکـت کنـد تـا به مورت دینامیکی، مشابه با جریان آب باشد؟

$$\Delta \circ (\Upsilon)$$
 Y $\Delta (\Upsilon)$


جریان یک سیال لزج در داخل لوله با عدد رینولدز ۹۵۰۵ = Re برقرار است. اگر طول لوله ۲۰ متر، قطر آن ۱ سانتیمتر و Re = 100 برقرار است. اگر طول لوله ۲۰ متر، قطر آن ۱ سانتیمتر و لزجت سینماتیکی $\frac{m}{r}$ ($g = 10 - \frac{m}{r}$) لزجت سینماتیکی لزجت سینماتیکی ($g = 10 - \frac{m}{r}$)

$$\mathbf{g} = \mathbf{1} \circ \frac{\mathbf{m}}{\mathbf{s}}$$
 ان ۲۰۵۰ و جا هد بود؟ ($\frac{\mathbf{m}}{\mathbf{s}} \circ \mathbf{s}$ باشد، افت انرژی در طول لوله، معادل چند متر خواهد بود؟ ($\frac{\mathbf{m}}{\mathbf{s}} \circ \mathbf{s}$ از \mathbf{s}) ۲۵/۶ (۱) ۱۲/۸ (۱)

۴۶ در دیواری مطابق شکل زیر، که از دو طرف تحت انتقال حرارت جابهجایی است، تولید داخلـی حـرارت بـا شــدت یکنواخت ġ وجود دارد. کدام نمودار، برای توزیع دمای حالت پایدار، مناسب تر است؟

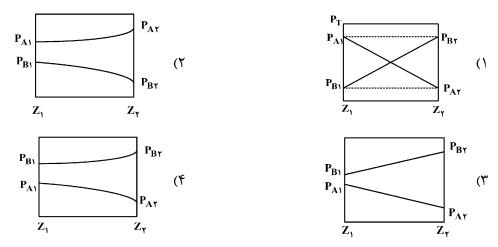
h در شکل زیر، درخصوص دمای T_w ، درحالت پایا، کدامیک از موارد زیر، درست است؟ (T_w دمای محیط اطراف و ضریب انتقال حرارت جابهجایی است.)

جه روی لولهای به قطر خارجی ۲/۵ cm که در محیطی با ضریب جابهجایی گرمایی $\frac{W}{m^7}$ قرار دارد، یک سانتیمتر K = 0/10 تر درست است? عایقی با ضریب هدایت حرارتی $\frac{W}{m.°C}$ می پوشانیم. کدام مورد در خصوص انتقال حرارت درست است؟ ۱) از لوله به محیط کاهش می یابد. ۳) ابتدا افزایش و سپس کاهش می یابد. www.konkur.in

نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور

	4300		صوری _ مور شوره (ص
ن باشد، ضخامت لایه مر		ینماتیکی (۷) یک سیال، ۸ برا	
	ینامیک (o _v) است؟	برابر ضخامت لایه مرزی هیدرود	حرارنی (_t) چند
	1 (۲		$\frac{1}{r}$ (1
			,
~	۴ (۴		۲ (۳
6 مبدل [™] ۱۰ و ضریب کل	ی اصلاحشده ۲ [°] ۸۴ است. سط ر	ی، اختلاف دمای متوسط لگاریتم	در یک مبدل حرار
، k <u>k</u> برقـرار باشــد، ميــ s	در این مبدل، جریان آب با شدت	۰ ۵۰ است. درصورتی که m ^۲ .°C	انتقال حرارت آن، -
	$(C_{P} = FT \circ \circ \frac{J}{kg.^{\circ}})$	جند درجه سانتیگراد است؟ (- C	افزایش دمای آب، -
	۲۰ (۲		۱۰ (۱
	40 (4		۳۰ (۳
شود. میزان آب تبخیرشده	، مطابق با شکل زیر استفاده می	خشک کردن فاز جامد، از طرحی	در یک فرایند برای
	•		خشککن (W)، چا
	W(H _Y O)		۱۳۰ (۱
۱۲०० kg/hr			۱۵۰ (۲
J∕/ H _Y O	خشککن		۲०० (۳
· · ·		۱∘ ½H _Y O ۹ ∘ %Solid	۲۵۰ (۴
% Solid	_		
ق، به شرح زیر است:	د ححمی گازهای حاصل از احترا	ا هوا سوزانده شده و ترکیب درص	. بک سوخت گازی با
	$\Lambda'_{, N_{Y}} : Y Y'_{, O_{Y}} : Y Y'_{$		
		زير ميتواند سوخت مورد نظر بان	کدامیک از گازهای
	CyHe (r	ייין ייט ייני ייין ייי איני ייין איני איני איני	$C_{\epsilon}H_{1\circ}$ (1
	CH _* (*		C _r H _r (r
kmol	,	kmol	, ,
رتیب با دبی hr °°	محصول بالا و پايين ســتون بــه م	فوراک با دبی kmol امه ۱۰۰ وارد و ه	- در یک برج تقطیر، •
		 ی شود. خوراک به صورت بخار اشبا	
			kmol
		- است؟	<u>kmol</u> ريبويلر چند hr
			140 (1
			۲۰ (۲
			۴۰ (۳
			۲۰ (۴

www.konkur.in

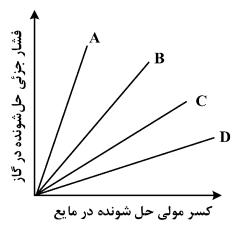

صفحه ۱۳

نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور

۵۴- به یک مخلوط دوجزئی با دبی kg او ۱۰۰ به میزان kJ/hr ۲۵۰۰۰ حرارت داده میشود و مخلوط گرمشده وارد یک ظرف تبخیر ناگهانی (Flash) شده و به دو فاز مایع و بخار تبدیل میشود. با توجه به اطلاعات زیر، درصد وزنی مایع تشکیلشده نسبت به خوراک ورودی، چقدر است؟

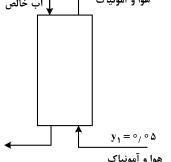
H_D (آنتالپی بخار اشباع) = ۹۰۰kJ/kg H_W (آنتالپی مایع اشباع) = ۱۰۰kJ/kg H_F (آنتالپی مخلوط خوراک) = ۵۰kJ/kg

- ۵۵- خوراکی دوجزئی با مول جزئی جزء فرّار تر برابر با ۵/۵ در یک برج تقطیر وارد می شود. معادله خطوط تبادل برج به صورت y=0/۶x+0/۳۲ و y=0/۶x است. حالت خوراک ورودی چگونه است؟ ۱) مایع سرد ۲) مایع اشباع ۳) دوفازی ۴
 - ۵۶- کدامیک از اشکال زیر، مربوط به نفوذ با مولهای برابر در فشار کل (P_T) است؟


۵۷ – در یک سیستم شیمیایی در یک موقعیت خاص، مقاومت فاز گاز ۲۰۵٪ از مقاومت کل را تشکیل میدهد. درصورتیکه ضریب انتقال جرم در فاز مایع و گاز بهترتیب 4_x = ۰/۵ و 4_y = ۰/۲ باشد، معادله منحنی تعادل این سیستم به چه صورت میتواند باشد؟

$$y = r/V\Delta x$$
 (r $y = r/\lambda x$ (r

$$y = x$$
 (f $y = f/t\Delta x$ (r


۵۸ - در شکل زیر، گاز در کدام حالت، حلالیت بیشتری در مایع دارد؟

- D (1
- C (1
- В (۳
- A (۴

نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور

$$- 0.9 - 0.0 + 0.$$

فیزیک جدید:

۶۳ – اندازه تکانه زاویهای مداریِ الکترونی در یک حالت کوانتومی، برابر با ۲√۳۸ است. تعداد مؤلفههای ممکـن تکانـه زاویهای بر روی محور z کدام است؟

- ۹ (۱
- ۲) ۷
- ۵ (۳
- ۳ (۴

۶۴- اگر الکترون و پروتون، انرژی های جنبشی (غیرنسبیتی) یکسانی داشته باشند، نسبت طول موج دوبروی الکترون به طول موج دوبروی پروتون کدام است؟ (جرم پروتون، ۱۸۴۰ برابر جرم الکترون است.) VILEO (1 1240 (1 $\frac{1}{\sqrt{14\xi_0}}$ (4 $\frac{1}{1+\epsilon_0}$ (r 66− طبق مدل اتمی بوهر، تکانهٔ زاویهای الکترون در nاُمین مدار اتم هیدروژن، متناسب با کدام مورد است؟ $\frac{1}{n}$ (1) $\frac{1}{n^{\gamma}}$ (7) $\frac{1}{\sqrt{n}}$ (\forall n (۴ ۶۶− طول موج نور لیزری mm ۶۴۰ m و توان آن ۱/۲۴ mW است. در هر ثانیه، چند فوتون از این لیزر گسیل می شود؟ $(hc = 17 \circ eV.nm)$ 5/4×1018 (T 1/1×1018 () $\Lambda (\circ \times) \circ^{10}$ (f F/0×1010 (T ۶۷- فوتونی با انرژی E به ذره آزاد ساکنی به جرم m برخورد میکند. بیشترین انـرژی جنبشـی ذره بعـد از پراکنـده شدن، کدام است؟ (c، سرعت نور است). $\frac{\tau E^{\tau}}{\tau E + m e^{\tau}}$ (1) $\frac{E^{r}}{E-mc^{r}}$ (r $\frac{1}{2}(E + mc^{\gamma})$ (π $E - mc^{\gamma}$ (f ۶۸- تابع کار فلزی eV ه ۴/۵۰eV است. اگر به این فلز، فوتونهایی با انرژی eV ه /۶ تابانده شود، انرژی سریع ترین الكترونهايي كه از فلز خارج مي شوند، چه كسرى از انرژي فوتونها است؟ $\frac{1}{r}$ (1 $\frac{1}{\pi}$ (7 <u>'</u> (٣ 1 (۴ فوتون با انرژی E به ذره آزاد ساکنی به جرم m برخورد میکند. اگر f بسـامد فوتـون پراکنـدهشـده و زاویـه -89 پراکندگی آن باشد، کسر انرژی کاهشیافته فوتون ($rac{\Delta E}{F})$ ، کدام است؟ $\frac{\mathrm{Ymc}^{\mathrm{Y}}}{\mathrm{hf}}(1-\cos\phi) \ (\mathrm{Y}$ $\frac{\mathrm{hf}}{\mathrm{ma}^{\gamma}}(1-\cos\phi)$ (1) $\frac{\mathrm{mc}^{\mathrm{T}}}{\mathrm{hf}}(1-\cos\phi) \ (\mathrm{T}$ $\frac{\mathrm{hf}}{\mathrm{rms}^{\mathrm{T}}}(1-\cos\phi)$ (f ۷۰ - تکانه ذره ای جند کیلوگرم است؟ اگر انرژی کل این ذره **MeV باشد، جرم این ذره چند کیلوگرم است**؟ 1/47×10-79 (T $T/F \circ \times 10^{-77}$ (1 8/87×10-57 (T 9/11×10-"1 (F

-76	
	-71
(ثابت پلانک برابر است با $J.s = \beta_{/} \beta \times 10^{-94} \text{ old}$	
۳/۳°×۱۰ ^{-۶} (۱	
$r_{/} \Delta \circ \times 1 \circ^{-r}$ (r	
طول عمر حالت برانگیخته اتمی ۲۰ ^{-۸} است. عدم قطعیا ۴π	-71
$(.h = 8/8 \times 10^{-77} \text{ J.s}$ است؟ (ثابت پلانک برابر است با است؟ (ثابت پلانک ا	
$r_{/}r \circ \times 1 \circ^{-\lambda}$ (1	
$\Delta_{/}$ ۲ $\Delta imes$ ۱ $\circ^{-\Delta}$ (۳	
	-71
_	
$\frac{1}{r}$ (r	
از سفینهای که با سرعت ۲/۰ سرعت نور از زمین دور م	-71
موجی که ناظر زمینی دریافت میکند، چند برابر گ است 	
\sqrt{r} (1	
<u>\\</u>	
$\sqrt{\tau}$	
انرژی کل ذرهای که با سرعت ۸/۰ سرعت نور حرکت میکن	-٧4
٨ ()	
١۶ (٣	
د. در های که با سبعت Λ و سبعت نور حرکت می کند، در δ	- V \$
	-۷۱
$\frac{\mathbf{p} \mathbf{c}}{\mathbf{k} \mathbf{c}^{T}} (\mathbf{l})$	
$\frac{\mathbf{P} \mathbf{C} \mathbf{R}}{\mathbf{Y} \mathbf{K} \mathbf{c}} $ (7)	
ناظر 'S نسبت به ناظر S با سرعت ۶/۰ سرعت نور در جه	-Y/
۰/۴ سرعت نور در همان جهت حرکت میکند. سرعت این	
۰/۹۸ (۱	
	$\begin{split} & (\gamma, \gamma)^{-\nu} (\gamma)^{-\nu} (\gamma$

شیمیفیزیک و ترمودینامیک:

۸۰ – در محفظهای با جداره عایق دو مول آلومینیم و سه مول اکسیدکروم در دمای ۲۹۸K واکنش میکنند. اگر در داخل محفظه تغییر فازی صورت نگیرد، پس از خاتمه واکنش، دمای داخل محفظه چند درجه سانتیگراد خواهد بود؟

$$Cr_{\gamma}O_{\gamma} + \gamma Al = \gamma Cr + Al_{\gamma}O_{\gamma} \qquad \Delta G^{\circ}(Cal) = -10^{\circ \circ \circ \circ + 10}T$$

$$C_{p}^{Cr} \approx C_{p}^{Al} = \delta \frac{Cal}{mol.K}$$

$$C_{p}^{Cr\gamma}O_{\gamma} \approx C_{p}^{Al_{\gamma}O_{\gamma}} = \gamma \circ \frac{Cal}{mol.K}$$

$$10^{\circ \circ} (\gamma \qquad 1070)$$

$$1070 (\gamma \qquad 1070)$$

۸۲- فشار بخار اعمالشده توسط سیستم A ـ B در دمای K ۵۰۰ ا برحسب X_A، در جدول زیر داده شده است:

X _A	°/۲	۰/ ۳	°/۴	٥/۵	°/ Y	°/ ٩	١
$P_A imes 10^{\circ}$	۰/۵	°/ Y۵	١	۱/۳	١/٩	۴/۸	۵

ثابت هنری جزء A در دمای K ۱۰۰۰ چقدر است؟

°/\$ (Y °/\$ ()) (\$ °/\$ ()

۸۳- در محلول دوتایی B ـ B در دمای ثابت T، تغییرات آنتالپی مولی کل مخلوط برابر (ΔH^M) میباشد. مشتق ΔH^M نسبت به X_B برابر کدام است؟

- ۸۴- رفتار آلیاژهای Au _ Cu در دمای ۴۲۷°C را می توان باقاعده فرض کرد. گرمای تشکیل یک مول آلیاژ Au – ۳۰٪ Cu در دمای ۴۲۷°C برابر ۶۰۰- کالری میباشد. اکتیویته مس در این آلیاژ کدام است؟

$$(\mathbf{R} = \mathbf{Y} \frac{\mathbf{Cal}}{\mathbf{mol.K}}, \mathbf{e}^{-1} = \circ/\mathbf{Y}\mathbf{Y})$$

$$\begin{split} & AA- \mathrm{id}{iddel{eq:abs}} \label{eq:abs} \end{tabular} \end{$$

دمای این سیستم درست است؟
$$\left(\begin{array}{c} \mathbf{R} = \mathbf{Y} \frac{\mathbf{Cal}}{\mathbf{mol.K}} \right)$$
 دمای این سیستم درست است؟ $\Delta T = + \mathfrak{N} \circ k$ (۲ $\Delta T = + \mathfrak{N} \circ k$ (۲ $\Delta T = + \mathfrak{N} \circ k$ (۴ $\Delta T = + \mathfrak{A} \circ \circ k$ (۴

www.konkur.in

456C

صفحه ۱۹

- ۹۱ در تحول ایزوترم یک مول گاز کامل، مقدار $\frac{\partial s}{\partial v}$) برابر کدام است؟ $\frac{R}{P}$ (۲ $\frac{1}{P}$ (۲ $\frac{1}{P}$ (۲ $\frac{1}{V}$ (۳ $\frac{1}{V}$ (۳ $\frac{1}{V}$ (۳ $\frac{1}{V}$ (۳ $\frac{1}{V}$ (۳ $\frac{1}{V}$ (۳ $\frac{1}{V}$ (۳ محلول های B - Sh (مقار با قاعده داشته و ضریب اکتیویته dP در دمای ۷۰۰K از رابطه زیر بهدست می آید: $\ln \gamma_{Pb} = - \circ I(1 - X_{Pb})^{\gamma}$

$$T_{m}^{Pb} = 9 \circ \circ K \quad L_{f}^{Pb} = 979 \circ \frac{J}{mol} \quad C_{P}^{Pb(s)} = 1 \circ \frac{J}{mol.K}$$

$$C_{P}^{Pb(L)} = 9 \circ \frac{J}{mol.K} , R = \Lambda \frac{J}{mol.K}$$

$$10 \quad (7 \qquad \qquad)0 \quad ($$

- P۹۳- یک سیستم ترمودینامیکی بهوسیله منبعی در دمای ثابت T نگهداشته شده است. در یک تحول، سیستم مقدار Q کالری حرارت از این منبع جذب کرده و مقدار W کالری کار انجام میدهد. در اثر تحول فوق، انرژی داخلی سیستم از U₁ به U_1 و آنتروپی از S₁ به S_1 تغییر میکند. با توجه به قانون اول ترمودینامیک، کدام مورد درست است? U₁ و آنتروپی از S₁ به S₁ تغییر میکند. با توجه به قانون اول ترمودینامیک، کدام مورد درست است? U₁ $U_1 - U_2 + W - T(S_2 - S_1) \ge 0$ (۲ $U_1 - U_2 - W + T(S_2 - S_1) \ge 0$) $U_1 - U_2 - W + T(S_2 - S_1) \ge 0$ (۳ $U_1 - U_2 - W + T(S_2 - S_1) \ge 0$) $U_2 - U_2 - W + T(S_2 - S_1) \ge 0$) $U_3 - U_2 - W + T(S_2 - S_1) \ge 0$
 - ۹۴- در دمای ۲۹۸K، مقادیر گرمای واکنشهای زیر، در جدول زیر داده شده است:

	•
واكنش	گرمای واکنش (کیلوکالری)
$Pb(s) + \frac{1}{\gamma}O_{\gamma} = PbO(s)$	-22/6
$\nabla PbO(s) + \frac{1}{\gamma}O_{\gamma} = Pb_{\gamma}O_{\gamma}(s)$	-1 \ /8
$Pb_{\gamma}O_{\gamma} + O_{\gamma} = \gamma PbO_{\gamma}(s)$	-TT/A

گرمای تشکیل استاندارد PbO_۲ جامد در دمای ۲۹۸K، تقریباً چند کیلوکالری است؟ ۱) ۹۲– ۹۲ (۲ ۳) ۶۶– ۲۲– ۴

۹۵- برای واکنش تجزیه آمونیاک در دمای ۴۰۰K، درصد حجمی گاز NH_۳ درحالت تعادل چقدر است؟ (فشار کل یک اتمسفر و درصد حجمی گاز ازت درحالت تعادل، ۱۲٫۵ درصد حجمی است.)

$$\text{TNH}_{\text{T}}(g) = \text{N}_{\text{T}}(g) + \text{TH}_{\text{T}}(g), \ \Delta G^{\circ} = \text{AV} \circ \text{T} \circ - \text{T} \text{IT}(J)$$

۹۱- برای گازی که از معادله واندروالس تبعیت میکند،
$$\left(\frac{\partial U}{\partial V}\right)_T$$
) کدام است? – ۹۱ $\frac{an^7}{V-nb}$ (۲ an^7 (۱)

$$\frac{1}{V^{\gamma}} (\gamma \qquad V - nD (\gamma))$$

۹۸- فشار وارده به یک مول آلومینیم در دمای ۳۰۰**K ، از ۱ به ۱۰۱ اتمسفر افزایش مییابد. تغییر آنتروپی ناشی از این** تغییر فشار برحسب Lit . atm ، کدام است؟ درجه

از فشار) المستقل از فشار) المستقل از فشار)
$$n_{A\ell} = 0.69 \times 10^{-6} \text{ K}^{-1}$$

 $-1/74 \times 10^{-0}$ (۲ -0.79×10^{-0} (۱ $+1/74 \times 10^{-0}$ (۴ $+0.79 \times 10^{-0}$ (۳ $+0.79 \times 1$

۹۹– اگر از گرمای احتراق کامل ۴۰/۰۰ گرم گرافیت (در واکنش تولید CO) در فشار ثابت ۱ اتمسفر و دمای ۲۵ درجه سانتی گراد، ۷۸۶۰ ژول گرما تولید شود و نیز از احتراق کامل ۱۴/۰ گرم مونواکسید کربن (در واکنش تولید CO) در شرایط فوق ۱۴۱۳ ژول گرما تولید شود، گرمای تشکیل یک مول دیاکسید کربن، چند کیلوژول بر مول است؟

$$(\mathbf{M}_{\mathbf{C}} = \mathbf{N} \operatorname{gr} \operatorname{mol}^{-1} \mathbf{g} \mathbf{M}_{\mathbf{O}} = \mathbf{N} \operatorname{gr} \operatorname{mol}^{-1})$$

- $\mathbf{V} \wedge \mathbf{V}$

- $-\Delta \lambda (f) f \circ \circ (f)$
- ۱۰۰ در فشارهای پایین، معادله واندروالس را می توان به صورت یک معادله ویریال نوشت:

PV = RT + BP V = RT + BP

(٢

راهنمایی: داوطلبان گرامی رشته «نانوفناوری ــ نانومواد» میبایست از میان دروس «خواص فیزیکی و مکانیکی مواد»، به شماره سؤالهای ۱۰۱ تا ۱۲۰ در صفحههای ۲۰ تا ۲۴ «پدیدههای انتقال جرم، مکانیک سیالات، انتقال حرارت» شماره سؤالهای ۱۲۱ تا ۱۴۰ در صفحههای ۲۴ تا ۲۷ و «الکترونیک (۱ و۲) و الکترومغناطیس مهندسی» شماره سؤالهای ۱۴۱ تا ۱۶۰ در صفحههای ۲۷ تا ۳۲ فقط یک درس را انتخاب نموده و به آن پاسخ دهند.

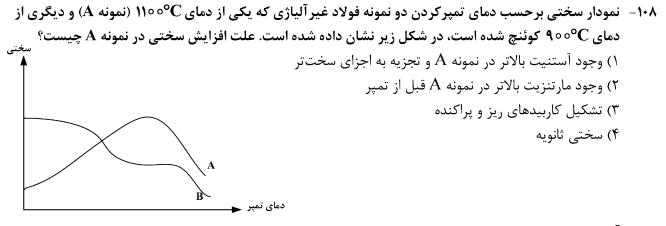
خواص فیزیکی و مکانیکی مواد:

-220 ()

است.) جول بردار برگرز مس با ساختار کریستالی FCC برحسب نانومتر چقدر است؟ (پارامتر شبکه مس، برابر $\frac{\sqrt{7}}{7}$ است.) 0 (۱) (۱) 0

۲/۵ (۴ ۰/۵ (۳

---- ultration theory of the set of the set


۱۰۴- در یک دیاگرام تعادلی سه تایی در فشار ثابت، در نقطه یوتکتیک، دمای کمتر از نقطه یوتکتیک و دمای بیشتر از نقطه یوتکتیک، درجه آزادی به تر تیب چند است؟ ۱) صفر، ۱ و ۲

۱۰۵- سطح فوقانی ورقی از جنس فولاد کربنی در ℃۵۰۰۰ تحت شرایط کربنزدایی شدید قرار میگیرد. در چه فاصلهای زیر سطح ورق، غلظت کربن پس از ۱۰ ساعت به نصف مقدار اولیه خود میرسد؟

 $\mathbf{D} = \mathbf{f} \times \mathbf{1} \circ^{-\mathbf{V}} \frac{\mathbf{cm}^{\mathbf{V}}}{\mathbf{cm}^{\mathbf{V}}}$ $\operatorname{erf}(\circ \Delta) = \circ \Delta$ ۷/۲ mm (۲ 17 mm () 1/Y mm (۴ ۲/۴ mm (۳ ۱۰۶- درصورتی که کشش سطحی مرز بین فازی و مرز دانه برابر باشد، ذره فاز دوم تحت چه زاویهای روی مرز دانه قرار می گیرد؟ **~**°° (**⊺** ۱) صفر درجه 80° (m 1100 (4 ۱۰۷- در یک کریستال BCC به حجم ۱cm^۳ و شعاع (۹^۰) ، اارژی اکتیواسیون لازم برای تشکیل ۱ مول جای خالی برابر KJ است. تعداد کل جاهای خالی در دمای ۴۰۰ K چقدر است؟ سما معنای ۲۰۰ $\mathbf{R} = \mathbf{A} \frac{\mathbf{J}}{\mathbf{mol.K}}$ $\exp(-\Upsilon\Delta) = 1/4 \times 10^{-11}$ $1/7 \times 10^{17}$ () 1/F×1011 (T $\gamma/\Lambda \times 10^{17}$ (T 4/X×1017 (4

نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور

456C

۱۰۹ - آستمپرینگ و مارتمپرینگ، جزو فرایندهای سردکردن دومرحلهای محسوب می شوند. چرا این فرایندها برای سرد کردن قطعات حجیم به کار نمی روند؟

 M_s B_s B_f M_f B_f

چه میزان است؟

۱۱۲ – در ساختار آلومینیم آنیلشده، چگالی نابهجاییها برابر <mark>1 – ۱</mark>۰^{۱۲} مست. فاصله متوسط نابهجاییها از یکدیگر m^۲

- ۱) ۱ نانومتر ۲) ۱ پیکومتر
- ۳) ۱ میکرومتر ۴ میلیمتر

456C

۱۱۳- در شکل زیر، هریک از منحنیهای تنش – کرنش نشانداده شده، ۱، ۲، ۳ و ۴ به تر تیب مربوط به کدام حالت از آلیاژ $AI - \frac{6}{5}$ در مراحل مختلف پیرسازی است؟ آلیاژ V – f/0 / Cu در مراحل مختلف پیرسازی است؟ ترین

> ۱) محلول جامد _ بیش پیرسازی شده _ پیر شده و تشکیل رسوبات GP _ پیر شده و رسیدن به بیشینه سختی ۲) محلول جامد _ پیر شده و تشکیل رسوبات GP _ پیر شده و رسیدن به بیشینه سختی _ بیش پیر سازی شده ۳) بیش پیر سازی شده _ محلول جامد _ پیر شده و تشکیل رسوبات GP _ پیر شده و رسیدن به بیشینه سختی ۴) بیش پیر سازی شده _ محلول جامد _ پیر شده و رسیدن به بیشینه سختی _ پیر شده و تشکیل رسوبات GP

- ۱۱۴- براساس بررسیهای غیرمخرب که بر روی ورق نازک تیتانیومی انجام شده، حداکثر طول ترک داخلی ۱ میلیمتر در ورق بهدست آمده است. با احتساب شرایط زیر، بیشینه تنشی که میتوان بر ورق اشارهشده اعمال نمود، چند مگاپاسکال
 - $(\mathbf{E} = \mathbf{17} \circ \mathbf{GPa}, \upsilon = \circ_{/} \mathbf{v} \quad \pi = \mathbf{v} \quad \mathbf{G}_{\mathbf{C}} = \mathbf{7} \Delta \frac{\mathbf{kN}}{\mathbf{m}})$ و $\mathbf{G}_{\mathbf{C}} = \mathbf{7} \Delta \frac{\mathbf{kN}}{\mathbf{m}}$ $\mathbf{17} \circ \circ (\mathbf{7} \qquad \mathbf{17} \mathbf{A} \circ (\mathbf{1})$ $\mathbf{17} \circ \circ (\mathbf{7} \qquad \mathbf{17} \mathbf{A} \circ (\mathbf{7})$

۱۱۷- میلهای پروپیلینی با طول ۲۰۰mm و سطح مقطع ۷۵mm تحت نیروی کششی ۳۰۰N در جهت طولی قرار میگیرد. اگر این میله پس از ۱۰۰ ثانیه نگهداری در این نیرو ۵Mm، تغییر طول دهد، مدول خزشی این میله چند GPa است؟ ۱) ۶/۱ ۲/۴ (۳) www.konkur.in

نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور

صفحه ۲۴

۱۱۸- در آلیاژی دمای بالا پس از ۱۰۰۰۵ ساعت کار در دمای C°۰۰۶ و تنش اعمالی ۲۷۰MPa شکست رخ میدهد. $(\mathbf{R} = \mathbf{A} / \mathbf{\pi} \frac{\mathbf{J}}{\mathrm{mol.}\mathbf{k}})$ است؟ (\mathbf{KJ} میزان انرژی محرکه، چند mol 170 (7 VY () 146 (7 740 (4 ۱۱۹- پیچی از فولاد کربنی با ساختار صددرصد پرلیتی ساخته شده است. فاصله لایههای پرلیت در سرپیچ ۳m و در بدنه پیچnm میباشد. استحکام تسلیم بدنه پیچ، چند برابر سرپیچ است؟ ۲ (۲ °/۵ (۱ $\overline{\sqrt{(r)}}$ (r JT (4 ۱۲۰- لایه ناز کی از $\mathrm{MgF}_{\mathrm{Y}}$ (ضریب انبساط خطی $\mathrm{C}^{-arphi}/\mathrm{c}$) بر روی قطعهای ضخیم و مسطح (ضـریب انبسـاط خطـی در $\mathbf{C}^{\circ} \circ \mathbf{C}$ پوشش داده شده و سپس مجموعه تا دمای $\mathbf{C}^{\circ} \circ \mathbf{C}$ سریع سرد مـیشـود. میـزان تــنش $\mathbf{C}^{\circ} \circ \mathbf{C}$ $(E_{MgF_{Y}} = 19 \circ GPa, v = \circ_{/})$ ایجادشده در لایه پوشش، چند MPa است؟ 101 (1 YD18 (1

۲۰۶ (۴ ۱۵۱/۲ (۳

پدیدههای انتقال (انتقال جرم، مکانیک سیالات، انتقال حرارت):

۱۲۱- در یک ظرف شیشهای مانند شکل زیر، مایع A در حال تبخیرشدن به داخل هوا (B) است. در بالای این ظرف، جریان از هوای مرطوب با غلظت X_A در جریان میباشد. میزان شار حاصل از جابهجایی ماده B، کدام است؟

Telegram: @uni_k

صفحه ۱۵	۲۵	صفحه
---------	----	------

ل مشترک مایع هـوا رخ					۱۲۵ یک سطح قائم در آ
	این سیستم است؟	ندام مورد، شرایط مرزی	ت Ca است. ۲	فصل مشترك	میدهد. غلظت در ۵
x 			at	$X = \circ$	$C_A = C_a$
↓↓			at	y = ∘	$C_A = C_{A^\circ}$ ()
		\rightarrow	at	$y = \delta$	$C_A = \circ$
		تبخير به هوا	at	$X = \circ$	$C_A = C_{A^\circ}$
			at	$y = \circ$	$C_A = C_a$ (Y
	$\downarrow \downarrow \downarrow \downarrow$		at	$y = \delta$	$\frac{\partial C_A}{\partial y} = \circ$
			at	$X = \circ$	$C_A = \circ$
$y = \delta$	<ا پ	v≡∘	at	y = ∘	$\frac{\partial C_A}{\partial y} = \circ$ (٣
			at	$y = \delta$	$C_A = C_a$
			at	$X = \circ$	$\frac{\partial C_A}{\partial x} = \circ$
			at	$y = \circ$	$C_A = \circ$ (f
			at	$y = \delta$	$C_A = C_a$

۱۲۶ – یک قطره مایع خالص A به شعاع R، به سیم نازکی متصل است. شار تبخیر A از روی سطح، N_{AR} است. رابطه تغییر شعاع قطره در طول زمان کدام است؟

$$\frac{dR}{dt} = -\frac{CD_{AB}}{V - X_A} \cdot \frac{dX_A}{dr} \quad (\Upsilon \qquad \qquad \frac{dR}{dt} = \frac{C_A}{r} \cdot \frac{d}{dr} (r\frac{dC_A}{dr}) + \frac{d^V C_A}{dr^V} \quad (\Upsilon \qquad \qquad \frac{dR}{dt} = -D_{AB}\frac{dC_A}{dt} \quad (\Upsilon \qquad \qquad \frac{dR}{dt} = -D_{A}\frac{dC_A}{dt} \quad (\Upsilon \qquad \qquad \frac{dR}{dt} = -D_{A}\frac$$

۱۲۷ - داخل یک ذره کروی، واکنش همگنی در حال انجام است. در این واکنش تنها ماده A وجود دارد. سرعت انجام واکنش، ۱۲۷ - داخل یک ذره کروی، واکنش می توان نفوذ و
 واکنش، R_A = - KC_A است. نفوذ ماده A به داخل کره، شعاعی است. با کدام عدد بدون بُعد، می توان نفوذ و
 واکنش را در این سیستم با هم مقایسه کرد؟
 (۱) شروود

۱۲۸- در یک شبکه آبرسانی، از یک پمپ سانتریفیوژ استفاده شده است. با ۲ برابر شدن دبـی موردنیـاز، تـوان پمـپ موردنیاز چند برابر میشود؟

$$F(F) \qquad T(T) \qquad \frac{1}{r}(1)$$

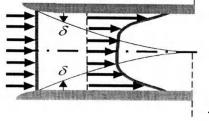
۲۹− یک بلوک سیمانی به وزن W روی سطح شیبداری که با افق زاویه θ میسازد، به پـایین مــیلغـزد. بـین بلـوک سیمانی و صفحه، لایهای از روغن به ضخامت h و با لزجت µ قرار دارد. سطح تمـاس بلـوک بـا روغــن A اسـت. سرعت حد لغزش بلوک کدام است؟

$$\frac{\mu A \sin \theta}{h W} (\gamma) \qquad \qquad \frac{h W \sin \theta}{\mu A} (\gamma) \\ \frac{h W}{\mu A \sin \theta} (\gamma) \qquad \qquad \frac{W A \sin \theta}{\mu h} (\gamma)$$

نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور

۱۳۰- لزجت نمونهای از یک رنگ در جریان پویسله درون لولهای به قطر ۲ سانتیمتر و طول ۱۰ سانتیمتر اندازه گرفته

۱۱۰- گرجت نمونهای از یک رنگ در جریان پویسته درون لونهای به قطر ۲ سانتیمتر و طول ۱۰ سانتیمتر انداره درفته شده است. دبی جریان ۱۰ لیتر بر ثانیه و افت فشار ۱۰۰ پاسکال گزارش شده است. لزجت رنگ برحسب پاسکال	
شده بست بست بی بریان ۲۰ میتر بر دنید و بات عسار ۲۰۰۰ پاستان ترارین ست بست بر بت ریا بر عسب پاستان ثانیه کدام است؟	
۳ _/ ۱۴×۱۰ ^{-۳} (۲	r/14×10 ⁻⁷ (1
۶/۲ ۸× ۱۰ ^{-۲} (۴	۶/۲۸×۱۰ ^{-۱} (۳
۱۳۱- در شکل زیر، دو لوله موازی ۱ و ۲ جریان را از نقطه A به B میبرند. کدام مورد درست است؟	
L_1, D_1	۱) دبی در مسیر ۱، با مسیر ۲ برابر است.
1	۲) دبی و افت انرژی، مستقل از مسیر هستند.
	۳) افت انرژی در مسیر ۱ و ۲، مساوی هستند.
	۴) افت انرژی در مسیر ۱، بیشتر از مسیر ۲ است
۱۳۲- در یک همزن توربینی استاندارد حاوی سیال نیوتونی که عـدد تـوان آن معـادل ۶/۳ ($m{arphi}={m{P}_{ m o}}=m{arphi}$ و عـدد	
رینولدز اختلاط معادل ۵۰۰ /۱۱ است (Re _M = ۱۱۰۰۰)، با ۲ برابر شدن سرعت چرخش پره، تـوان (P _A) چنـد	
	برابر میشود؟
۴ (۲	λ ()
۴) (۴	۲ (۳
۱۳۳- با افزایش دما در تابستان در یک واحد صنعتی، احتمال کاویتاسیون برای پمپ سانتریفیوژ مورداستفاده در انتقـال ~	
یک سیال نفتی بهوجود آمده است. چه پیشنهادی برای رفع این مشکل دارید؟	
۱) پمپ را باید در فاصله نزدیکتری نسبت به مخزن انتهای خط نصب کرد.	
صب کرد.	۲) پمپ سانتریفیوژ را باید در ارتفاع پایینتری ن
	۳) پمپ را باید در ارتفاع بالاتری نصب کرد.
	۴) دور پمپ را باید افزایش داد.
۱۳۴- یک مخزن نگهداری سیال، به شکل زیر طراحی شده است. آیا در این حالت، دریچه A باز خواهد شد؟ چه نیرویی 	
ho m	به دریچه وارد میشود؟ (g = ۱۰ (g = ۱۰)
	ه ۱) بلی _ ۴ ∘ √۵ kN
$\rho_{\eta} = A_{00} kg/m^{\gamma}$	۲) خير _ ۱۰ ∘√۵ kN
۴ m ۳ m ρ _γ =١٥٥٥kg/m ^۳	۲) مير <u>د</u> ۲۸۰ س√۵ در ۳) بلی _ ۳ ۱۰ ∘√۵ ا
	۴) بلی _ ۳۱۷ ۵۵ ۱۹ ۴) خبر _ ۴ √۵ kN
۱۳۵ - پس از باز کردن درب فریزر، به مرور زمان، کمتر احساس سرما میکنیم. بیشترین نرخ کاهش تبادل گرما، ناشی از انتقال گی النیا مترکدار وا با استنگ	
	انتقال گرما از طریق کدام عامل است؟ () مایندار مروا
۲) هدایتی ۴) مدارت مداریها	۱) جابهجایی هوا ۳۷ تشمیر
۴) هدایتی و جابهجایی	۳) تشعشع ۱۳۶- کدام مورد، درخصوص Nu و Pr درست است؟
۲) فقط Nu، بدون بعد است.	۱۱۶ - ددام هورد، در خصوص ۱۹۳ و ۲۱ درست است: ۱) هر دو، بدون بعد هستند.
۲) فقط ۱۹۳ بدون بعد است. ۴) Pr برخلاف Nu، به عدد رينولدز بستگي دارد.	۳) هر دو، به عدد رینولدز بستگی دارند. ۳


نانو فناوری _ نانو مواد (کد ۱۲۷۳) _ شناور

لایه مرزی سرعتی را نشان میدهد.


456C

صفحه ۲۷

۱۳۷- در داخل لولهای به قطر و دمای دیواره ثابت، آب به صورت آرام جریان دارد. در شکل زیر، توزیع لایه مرزی در ناحیه ورودی نشان داده شده است. کدام مورد، درخصوص لایه مرزی رسمشده درست است؟

- ۲) لایه مرزی گرمایی را نشان میدهد. ۳) لایه مرزی گرمایی و سرعتی را نشان میدهد، وقتی که پرانتل برابر ۱ است. ۴) لایه مرزی گرمایی و سرعتی را نشان میدهد، وقتی که پرانتل خیلی کوچک است.
- ۱۳۸ در حالت پایا، شار حرارت اتلافی از دیواره «۱» به هوای محیط C ۱۵°C برابر ۴۵۰ وات از هر مترمربع است. اگر در حالت پایا، دمای سطح خارجی دیواره «۱» ، C °۰ ۳ باشد، ضریب انتقال حرارت جابهجایی چقدر است؟

۱۴۰- توزیع دمای دیواره کورهای با دمای سطح خارجی C $^{\circ}$ C در حالت پایا، به صورت $^{\circ}$ + (T - T) $^{\circ}$ T است که در آن T، برحسب درجه سلسیوس و X، برحسب سانتی متر می باشد. ضخامت دیواره کوره، چند سانتی متر است? (۱) ۲۰ (۱) ۲۰ (۲) (۱) ۲۰ (۲) ۲۰

الکترونیک (۱ و ۲) و الکترومغناطیس مهندسی:

-۱۴۱ با فرض ایده آل بودن آپامپ، اگر $V_{in} = \text{FV}$ باشد، جریان I_L برحسب میلی آمپر، به کدام مورد نزدیک تر است؟ (فرض کنید V_{D-on} دیود، برابر V_{\circ} ولت باشد.)) \circ (۱) \circ (۱) \circ (۲) \circ (۲) \circ (۲) \circ (۴) \wedge (۳) \wedge (۴

R₁=10KΩ ≩

R₂=20KΩ

-۱۴۲ اگر اختلاف پتانسیل دو سر مقاومت R_{γ} برابر γ' ولت و $\gamma = (W/L)$ باشد. $\gamma(W/L)_{\gamma}$ چقدر است? (فرض $\mu_n C_{ox} = \gamma \mu_p C_{ox} = \circ/\gamma mA / V^{\gamma}$. $V_{tn} = \circ/\delta V$. $V_{tp} = -\circ/\gamma V V$ کنید $\gamma(V)$ ($V_{tn} = 0$) ($V_{tp} = -\circ/\gamma V V$) ($V_{tp} = -\circ/\gamma V V V$) ($V_{tp} = -\circ/\gamma V V V$) ($V_{tp} = -\circ/\gamma V$

ا ۱۴۳- با فرض بایاس شدن ترانزیستور در ناحیه اشباع، ۵ λ و λ = ۵ و $g_{
m m}$ مقدار مقاومت ${
m R}_{
m D}$ (بر حسب کیلواُهم) (بر حسب کیلواُهم)

چقدر باشد تا
$$R = 5K\Omega$$

 R_D
 V_{out}
 $g_m = 2mS$
 V_{out}
 V_{out}

ا فرض بایاس شدن ترانزیستور در ناحیـه خطـی (فعـال)، ایـده آل بـودن منبـع جریـان، ۵۰۰ = $V_{\rm A}=\infty$ ، $V_{\rm A}=\infty$

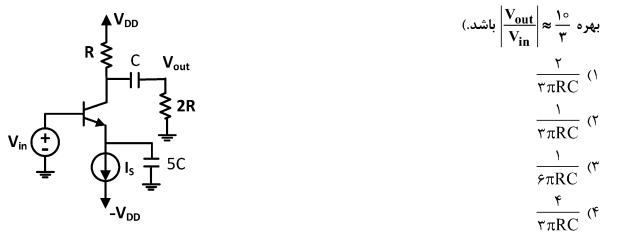
$$V_{\text{DD}}$$
 (1)
 V_{DD} (1)
 V_{out} (1)
 V_{out}

مقاومت R چقدر (بر حسب کیلواُهم) باشد که $I_{out} = M A$ شود؟ (با فرض کارکرد تمامی ترانزیستورها در ناحیه $I_{out} = M A$ مقاومت R جهد (فعال)، $B = \infty$ و VV S = A

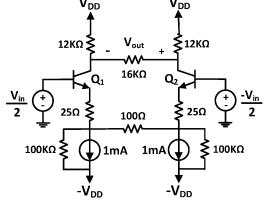
$$^{\circ/\Delta}$$
 ()
 $^{\circ/\Delta}$ ()
 $^{$

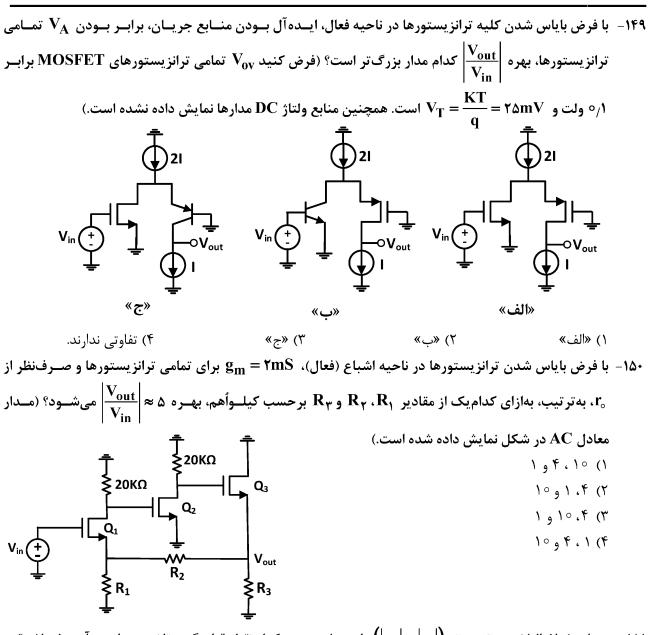
Telegram: @uni_k

R ≶


Q

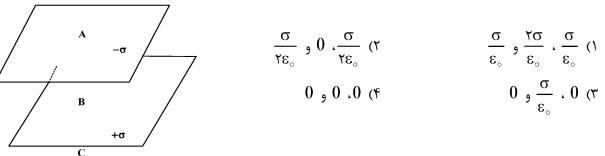
 Q_2


R 🕻


$$R_{C} \cdot \left| \frac{V_{out}}{V_{in}} \right| = 1 \circ \alpha, R_{A} = \infty, \beta = 1 \circ \alpha, \beta = 1 \circ \alpha,$$

r₀ با فرض بایاس شدن ترانزیستور در ناحیه خطی (فعال)، ایـدهآل بـودن منبـع جریـان، ۱ ≈ α و صـرفنظر از ترانزیستور، مقدار فرکانس قطع پایین این مدار به کدام مورد نزدیکتر است؟ (فرض کنید در باند میانی فرکـانس،

اب افرض بایاس شدن کلیه ترانزیستورها در ناحیه فعال، ایـده آل بـودن منـابع جریـان و صـرفنظر از r_{\circ} تمـامی ۱۴۸ – ۱۴ باشد.) ترانزیستورها، بهره $V_{T} = \frac{kT}{q} = ۲۵mv$ و ۱۰۰ $\beta = ۱۰$ و ۱۰۰ $V_{T} = \frac{kT}{V_{in}}$



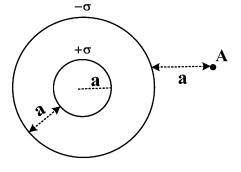
۱۵۱- دو بار مختلفالعلامت q₁ و q₁ $q_1 \left| \left| q_{\gamma} \right| > \left| q_{\gamma} \right| \right)$ داریم. بار سوم در کدام نقطه قرار بگیرد تا نیروی وارد بر آن صفر باشد؟

- $-\underline{\mathbf{A}} \stackrel{\mathbf{q}_1}{\bullet} \underline{\mathbf{B}} \stackrel{\mathbf{q}_7}{\bullet} \underline{\mathbf{C}}$
 - В (۲
 - С (т

) با توجه به علامت بارهای q_{1} و q_{1} ، نقطه A یا C.

۱۵۲- دو صفحه باردار بسیار بزرگ با چگالی بار سطحی σ+ و σ- مطابق شکل قرار گرفتهاند. مقدار نیروی وارد بر بار ۱C در نقاط A (بالای دو صفحه) ، B (بین دو صفحه) و C (پایین دو صفحه) بهتر تیب برابر با کدام مورد است؟

Telegram: @uni_k


L

- ۱۵۳- دو پوسته کروی مطابق شکل، چگالی بار سطحی σ+ و σ- دارند. با تغییر در بار پوستهها (مثبت به منفی و منفی به مثبت)، مقدار تغییر در میدان الکتریکی در نقطه A، کدام است؟
 - $\frac{\sigma}{\varepsilon_{\circ}} (1)$ $\frac{\Delta\sigma}{\tau \varepsilon_{\circ}} (7)$ $\frac{\tau \sigma}{\tau \varepsilon_{\circ}} (7)$ $\frac{\tau \sigma}{\tau \varepsilon_{\circ}} (7)$

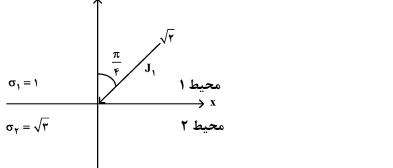
) () 7 (7

 $\sqrt{\frac{r}{r}}$ (r

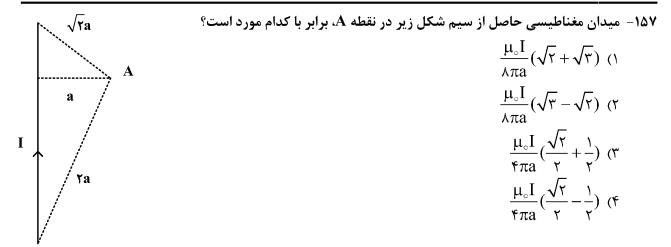
 $\int \frac{\pi}{2} (f)$

۱۵۴- ناحیه بین دو استوانه به طول L و شعاعهای a و b، با ماده دیالکتریک با ثابت $rac{m}{r}=\epsilon(r)=rac{m}{r}$ پر شده است. ظرفیت خازن بین دو استوانه،کدام است؟

$$\epsilon(\mathbf{r}) = \frac{\mathbf{m}}{\mathbf{r}}$$

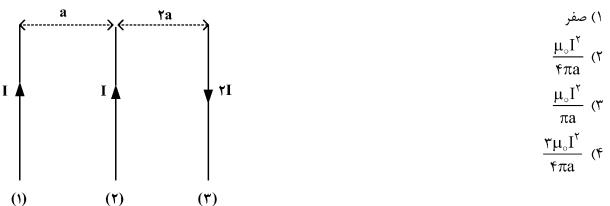

$$\frac{\forall \pi \varepsilon_{\circ} \mathbf{mL}}{\mathbf{h} - \mathbf{a}} (\mathbf{r})$$

$$\frac{\forall \pi \varepsilon_{\circ} \mathbf{mL}}{\mathbf{h} - \mathbf{a}} \mathbf{h} + \mathbf{h} +$$


۱۵۵- ذره باردار به جرم m مطابق شکل، بین دو صفحه که به پتانسیل صفر متصل هستند، قرار دارد. بار ذره چه مقدار باشد تا برآیند نیروهای وارد بر ذره در راستای عمود صفر باشد؟

۱۵۶- دو محیط با رسانندگیهای ۱ و √√ مطابق شکل قرار گرفتهاند. با توجه به بردار جریان J_۱ در محیط اول، اندازه بردار جریان در محیط دوم چه مقداری دارد؟

456C



ا بردار جابهجایی الکتریکی $(\vec{\mathbf{D}})$ در یک مکعب به مرکز مبدأ مختصات که از مادهای با ثابت دیالکتریک $(\vec{\mathbf{D}})$ در الکتریک ق $\mathbf{E}_r = 1 + \frac{1}{x}$ داده شده است. چگالی حجمی بار مقید در مبدأ $\mathbf{E}_r = 1 + \frac{1}{x}$ مختصات چقدر است؟

۱۵۹ مقدار اندوکتانس متقابل بین یک سیم مستقیم بلند و حلقه مثلثی هادی در دو حالت (۱) و (۲)، چه مقدار تفاوت دارد؟

۱۶۰ سه سیم طویل، مطابق شکل قرار دارند. مقدار نیروی وارد بر سیم شماره (۲) چقدر است؟

